ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: ЭЛЕКТРОСТАТИКА - definição. O que é ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: ЭЛЕКТРОСТАТИКА. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: ЭЛЕКТРОСТАТИКА - definição

РАЗДЕЛ ГЕОФИЗИКИ, ИЗУЧАЮЩИЙ ПРОИСХОЖДЕНИЕ И ПРИРОДУ МАГНИТНОГО ПОЛЯ ЗЕМЛИ И ОКОЛОЗЕМНОГО КОСМИЧЕСКОГО ПРОСТРАНСТВА
Магнетизм земной; Земной магнетизм

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: ЭЛЕКТРОСТАТИКА      
К статье ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ
В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между такими зарядами, было отмечено еще во времена Гомера. Слово "электричество" происходит от греческого elektron (янтарь), поскольку первые описанные в истории наблюдения электризации трением связаны именно с этим материалом. В 1733 Ш.Дюфе (1698-1739) открыл, что существуют электрические заряды двух типов. Заряды одного типа образуются на сургуче, если его натирать шерстяной тканью, заряды другого типа - на стекле, если его натирать шелком. Одинаковые заряды отталкиваются, разные - притягиваются. Заряды разных типов, соединяясь, нейтрализуют друг друга. В 1750 Б.Франклин (1706-1790) разработал теорию электрических явлений, основанную на предположении, что все материалы содержат некую "электрическую жидкость". Он полагал, что при трении двух материалов друг о друга часть этой электрической жидкости переходит с одного из них на другой (при этом общее количество электрической жидкости сохраняется). Избыток электрической жидкости в теле сообщает ему заряд одного типа, а ее недостаток проявляется как наличие заряда другого типа. Франклин решил, что при натирании сургуча шерстяной тканью шерсть отнимает у него некоторое количество электрической жидкости. Поэтому он назвал заряд сургуча отрицательным.
Взгляды Франклина очень близки современным представлениям, согласно которым электризация трением объясняется перетеканием электронов с одного из трущихся тел на другое. Но поскольку в действительности электроны перетекают с шерсти на сургуч, в сургуче возникает избыток, а не недостаток этой электрической жидкости, которая теперь отождествляется с электронами. У Франклина не было способа определить, в каком направлении перетекает электрическая жидкость, и его неудачному выбору мы обязаны тем, что заряды электронов оказались "отрицательными". Хотя такой знак заряда вызывает некоторую путаницу у приступающих к изучению предмета, эта условность слишком прочно укоренилась в литературе, чтобы говорить об изменении знака заряда у электрона после того, как его свойства уже хорошо изучены.
С помощью крутильных весов, разработанных Г.Кавендишем (1731-1810), в 1785 Ш.Кулон (1736-1806) показал, что сила, действующая между двумя точечными электрическими зарядами, пропорциональна произведению величин этих зарядов и обратно пропорциональна квадрату расстояния между ними, а именно:
где F - сила, с которой заряд q отталкивает заряд того же знака q?, а r - расстояние между ними. Если знаки зарядов противоположны, то сила F отрицательна и заряды не отталкивают, а притягивают друг друга. Коэффициент пропорциональности K зависит от того, в каких единицах измеряются F, r, q и q?.
Единицы измерения заряда первоначально не существовало, но закон Кулона дает возможность ввести такую единицу. Этой единице измерения электрического заряда присвоено название "кулон" и сокращенное обозначение Кл. Один кулон (1 Кл) представляет собой заряд, который остается на первоначально электрически нейтральном теле после удаления с него 6,242?1018 электронов.
Если в формуле (1) заряды q и q??выражены в кулонах, F - в ньютонах, а r - в метрах, то K . 8,9876?109 H?м2/Кл2, т.е. примерно 9?109 Н?м2/Кл2. Обычно вместо K используют константу ?0 = 1/4??. Хотя при этом выражение для закона Кулона немного усложняется, это позволяет обходиться без множителя 4. в других формулах, которые применяются чаще закона Кулона.
Электростатические машины и лейденская банка. Машину для получения статического заряда большой величины путем трения изобрел примерно в 1660 О.Герике (1602-1686), описавший ее в книге Новые опыты о пустом пространстве (De vacuo spatio, 1672). Вскоре появились другие варианты такой машины. В 1745 Э.Клейст из Каммина и независимо от него П.Мушенбрук из Лейдена обнаружили, что стеклянную посудину, выложенную изнутри и снаружи проводящим материалом, можно использовать для накопления и хранения электрического заряда. Стеклянные банки, выложенные изнутри и снаружи оловянной фольгой - так называемые лейденские банки - были первыми электрическими конденсаторами. Франклин показал, что при зарядке лейденской банки наружное покрытие из оловянной фольги (наружная обкладка) приобретает заряд одного знака, а внутренняя обкладка - равный по величине заряд противоположного знака. Если обе заряженные обкладки приводятся в соприкосновение или соединяются проводником, то заряды полностью исчезают, что свидетельствует об их взаимной нейтрализации. Отсюда следует, что заряды свободно перемещаются по металлу, но не могут перемещаться по стеклу. Материалы типа металлов, по которым заряды передвигаются свободно, были названы проводниками, а материалы типа стекла, через которые заряды не проходят, - изоляторами (диэлектриками).
Диэлектрики. Идеальный диэлектрик - это материал, внутренние электрические заряды которого связаны настолько прочно, что он не способен проводить электрический ток. Поэтому он может служить хорошим изолятором. Хотя идеальных диэлектриков в природе не существует, проводимость многих изоляционных материалов при комнатной температуре не превышает 10-23 проводимости меди; во многих случаях такую проводимость можно считать равной нулю.
Проводники. Кристаллическая структура и распределение электронов в твердых проводниках и диэлектриках сходны между собой. Основное различие заключается в том, что в диэлектрике все электроны прочно связаны с соответствующими ядрами, тогда как в проводнике имеются электроны, находящиеся во внешней оболочке атомов, которые могут свободно перемещаться по кристаллу. Такие электроны называют свободными электронами или электронами проводимости, поскольку они являются переносчиками электрического заряда. Число электронов проводимости, приходящихся на один атом металла, зависит от электронной структуры атомов и степени возмущения внешних электронных оболочек атома его соседями по кристаллической решетке. У элементов первой группы периодической системы элементов (лития, натрия, калия, меди, рубидия, серебра, цезия и золота) внутренние электронные оболочки заполнены целиком, а во внешней оболочке имеется один-единственный электрон. Эксперимент подтвердил, что у этих металлов приходящееся на один атом число электронов проводимости приблизительно равно единице. Однако для большинства металлов других групп характерны в среднем дробные значения числа электронов проводимости в расчете на один атом. Например, у переходных элементов - никеля, кобальта, палладия, рения и большинства их сплавов - число электронов проводимости на один атом равно примерно 0,6. Число носителей тока в полупроводниках гораздо меньше. Например, в германии при комнатной температуре оно порядка 10-9. Чрезвычайно малое число носителей в полупроводниках приводит к возникновению у них множества интересных свойств. См. ФИЗИКА ТВЕРДОГО ТЕЛА
; ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ
; ТРАНЗИСТОР
.
Тепловые колебания кристаллической решетки в металле поддерживают постоянное движение электронов проводимости, скорость которых при комнатной температуре достигает 106 м/с. Поскольку это движение хаотично, оно не приводит к возникновению электрического тока. При наложении же электрического поля появляется небольшой общий дрейф. Этот дрейф свободных электронов в проводнике и представляет собой электрический ток. Поскольку электроны заряжены отрицательно, направление тока противоположно направлению их дрейфа.
Разность потенциалов. Для описания свойств конденсатора необходимо ввести понятие разности потенциалов. Если на одной обкладке конденсатора имеется положительный заряд, а на другой - отрицательный заряд той же величины, то для переноса дополнительной порции положительного заряда с отрицательной обкладки на положительную необходимо совершить работу против сил притяжения со стороны отрицательных зарядов и отталкивания положительных. Разность потенциалов между обкладками определяется как отношение работы по переносу пробного заряда к величине этого заряда; при этом предполагается, что пробный заряд значительно меньше заряда, находившегося первоначально на каждой из обкладок. Несколько видоизменив формулировку, можно дать определение разности потенциалов между любыми двумя точками, которые могут находиться где угодно: на проводе с током, на разных обкладках конденсатора либо просто в пространстве. Это определение таково: разность потенциалов между двумя точками пространства равна отношению работы, затрачиваемой на перемещение пробного заряда из точки с более низким потенциалом в точку с более высоким потенциалом, к величине пробного заряда. Снова предполагается, что пробный заряд достаточно мал и не нарушает распределения зарядов, создающих измеряемую разность потенциалов. Разность потенциалов V измеряется в вольтах (В) при условии, что работа W выражена в джоулях (Дж), а пробный заряд q - в кулонах (Кл).
Емкость. Емкость конденсатора равна отношению абсолютной величины заряда на любой из двух его обкладок (напомним, что их заряды различаются только знаком) к разности потенциалов между обкладками:
Емкость C измеряется в фарадах (Ф), если заряд Q выражен в кулонах (Кл), а разность потенциалов - в вольтах (В). Две только что упомянутые единицы измерения, вольт и фарада, названы так в честь ученых А.Вольты и М.Фарадея.
Фарада оказалась настолько крупной единицей, что емкость большинства конденсаторов выражают в микрофарадах (10-6 Ф) или пикофарадах (10-12 Ф).
Электрическое поле. Вблизи электрических зарядов существует электрическое поле, величина которого в данной точке пространства равна, по определению, отношению силы, действующей на точечный пробный заряд, помещенный в эту точку, к величине пробного заряда, опять-таки при условии, что пробный заряд достаточно мал и не изменяет распределения зарядов, создающих поле. Согласно этому определению, действующая на заряд q сила F и напряженность электрического поля E связаны соотношением
Фарадей ввел представление о силовых линиях электрического поля, начинающихся на положительных и оканчивающихся на отрицательных зарядах. При этом плотность (густота) силовых линий пропорциональна напряженности поля, а направление поля в данной точке совпадает с направлением касательной к силовой линии. Позднее К.Гаусс (1777-1855) подтвердил справедливость этой догадки. Исходя из установленного Кулоном закона обратных квадратов (1), он математически строго показал, что силовые линии, если их строить в соответствии с представлениями Фарадея, непрерывны повсюду в пустом пространстве, начинаясь на положительных зарядах и заканчиваясь на отрицательных. Это обобщение получило наименование теоремы Гаусса. Если полное число силовых линий, выходящих из каждого заряда Q, равно Q/?0, то плотность линий в любой точке (т.е. отношение числа линий, пересекающих воображаемую площадку малого размера, помещенную в эту точку перпендикулярно им, к площади этой площадки) равна величине напряженности электрического поля в этой точке, выраженной либо в Н/Кл, либо в В/м.
Простейший конденсатор представляет собой две параллельные проводящие пластины, расположенные близко друг к другу. При зарядке конденсатора пластины приобретают одинаковые, но противоположные по знаку заряды, равномерно распределенные по каждой из пластин, за исключением краев. Согласно теореме Гаусса, напряженность поля между такими пластинами постоянна и равна E = Q/?0A, где Q - заряд на положительно заряженной пластине, а А - площадь пластины. В силу определения разности потенциалов имеем V = Ed, где d - расстояние между пластинами. Таким образом, V = Qd/?0A , и емкость такого плоскопараллельного конденсатора равна:
где C выражается в фарадах, а A и d, соответственно, в м2 и м.
Геомагнетизм         
ГЕОМАГНЕТИЗМ         
земной магнетизм, магнитное поле Земли и околоземного космического пространства. Земля обладает магнитным полем дипольного типа, как будто бы в ее центре расположен гигантский полосовой магнит. Конфигурация этого поля медленно изменяется, вероятно в результате движения расплавленного материала во внешнем ядре Земли на глубинах более 2900 км. Главное магнитное поле обусловлено источниками, расположенными в глубинах Земли. На медленные вариации главного магнитного поля накладываются быстрые, но слабые изменения, вызванные электрическими токами в ионосфере. Электрические свойства ионосферы связаны с присутствием в ней заряженных частиц, возникающих при ионизации атмосферы солнечным излучением. Ветры, дующие в ионосфере в присутствии постоянного магнитного поля Земли, приводят к возникновению электрических токов, которые, в свою очередь, создают дополнительное изменяющееся магнитное поле.
Кроме этих регулярных магнитных вариаций, наблюдаются также возмущения, обусловленные происходящими время от времени солнечными вспышками - источниками ультрафиолетовых и рентгеновских лучей и возмущенного потока заряженных частиц солнечного ветра. Эта радиация увеличивает ионизацию и вызывает дополнительные электрические токи в ионосфере. Временами солнечный ветер настолько эффективно взаимодействует с геомагнитным полем, что формирует кольцевой электрический ток на расстоянии в несколько радиусов земного шара; это приводит к уменьшению главного магнитного поля; такие магнитные возмущения ощущаются во всем мире, но наиболее сильно проявляются в полярных районах. В периоды сильных магнитных возмущений происходят особенно интенсивные полярные сияния, а также часто нарушается дальняя радиосвязь.
Исследования магнитного поля Земли используются для изучения физического состояния глубоких недр и процессов, происходящих в высоких слоях атмосферы. Наблюдения магнитных вариаций проводятся на земной поверхности, в океанах, а также с воздуха и из космоса с помощью самолетов и спутников. Магнитное поле играет также важную роль в областях, отстоящих от поверхности Земли на тысячи и более километров; в их пределах интенсивный поток частиц, захваченных магнитным полем, создает серьезные проблемы для аэрокосмических исследований. Солнечные и галактические космические лучи, несмотря на их высокую энергию, отклоняются магнитным полем Земли до того, как попадут в пределы атмосферы. См. также АТМОСФЕРА
.
Историческая справка. Если полосовой магнит свободно подвесить на нити, прикрепленной к его центру, ось магнита в первом приближении сориентируется в направлении север - юг. Точно не известно, когда было впервые обнаружено такое свойство магнита. Возможно, китайцы были знакомы с ним уже в 1100, однако практическое использование этого явления началось лишь 200 лет спустя. В Западной Европе магнитный компас применяется в навигации с 1187.
Основы науки о геомагнетизме были заложены в период между 13 и 16 столетиями. К середине 15 в. стало известно, что подвешенный магнит не всегда указывает точно на север. Первые сведения о наклонении направления земного магнитного поля относительно горизонтальной плоскости появились в середине 16 в. В 1600 У.Гильберт, придворный врач Елизаветы I, опубликовал знаменитый трактат О магните, магнитных телах и о большом магните - Земле. Новая физиология, доказанная множеством аргументов и опытов (De magnete, magneticisque corporibus et de magno magnete tellure. Physiologia nova; рус. перевод 1956), в котором описал свойства магнита и земного магнетизма. Он отметил, что Земля, по-видимому, является огромным сферическим магнитом.
Вариации магнитного поля во времени были зафиксированы в 1635 Г.Геллибрандтом, профессором астрономии Грешам-Колледжа (Лондон). В 1701 астроном Э.Галлей опубликовал первую карту геомагнитного поля. В середине 18 в. была установлена связь между полярным сиянием и магнитными вариациями. В 19 в. К.Гаусс, внесший большой вклад в развитие знаний о геомагнетизме, усовершенствовал приборы для измерения магнитных вариаций и установил их в магнитной обсерватории в Гёттингене, построенной в 1833 из немагнитных материалов. В 1834 Гаусс и В.Вебер приняли участие в программе Ф.Гумбольдта наблюдений за магнитными явлениями, которую одновременно проводили ок. 50 обсерваторий, входивших в Гёттингенский магнитный союз. Гаусс обобщил магнитные данные и математически доказал гипотезу Гильберта о том, что источник главного (основного) магнитного поля находится внутри Земли.
Описание геомагнитного поля. В любой точке Земли магнитное поле исчерпывающим образом характеризуется его интенсивностью и направлением, угол которого с горизонтальной плоскостью называется магнитным наклонением (I). Если спроектировать поле на горизонтальную плоскость, направление в первом приближении будет ориентировано с севера на юг, но в общем случае будет образовывать некоторый угол с истинным направлением географического меридиана; это отклонение носит название магнитного склонения (D). Амплитуда, или напряженность, магнитного поля называется полной магнитной интенсивностью (F). Магнитное поле может быть представлено двумя взаимно перпендикулярными компонентами: горизонтальной (H) и вертикальной (Z). Если векторы, показывающие интенсивность и направление горизонтальной компоненты в различных точках Земли, нанести на карту, то видно, что они расходятся от точки вблизи Южного полюса и сходятся в точке вблизи Северного полюса. Эти точки называются соответственно Южным и Северным магнитными полюсами. На полюсах магнитное поле направлено вертикально. Линию, на которой магнитное поле направлено горизонтально, называют магнитным экватором.
Магнитные полюсы не совпадают с географическими и весьма быстро перемещаются. Северный магнитный полюс находится в северных водах Канады. Его координаты в 1900 были 69. с.ш. и 97. з.д., в 1950 - 72. с.ш. и 96. з.д., в 1980 - 75. с.ш. и 100. з.д, а в 1985 - 77. с.ш. и 102. з.д. Южный магнитный полюс в 1985 имел координаты 65,5. ю.ш. и 139,5. в.д. Прямая линия, проведенная через эти магнитные полюсы, не проходит через центр Земли.
Измерения геомагнитного поля показывают, что на поверхности Земли в целом оно может быть представлено как поле полосового магнита, помещенного в центре планеты. Его еще называют полем магнитного диполя; вне сферы оно имеет такую конфигурацию, как если бы сфера была однородно намагничена. Эта модель дает наилучшее (но далеко не идеальное) совпадение с действительным полем. Две точки, в которых ось диполя пересекает земную поверхность, называют геомагнитными полюсами. В начале 1990-х годов геомагнитный экватор был наклонен к географическому экватору на 12?. Северный геомагнитный полюс имел координаты 79. с.ш. и 70. з.д., а ось диполя отстояла от центра Земли на 460 км в направлении Тихого океана (18. с.ш., 148. в.д.). Полная магнитная напряженность на геомагнитных полюсах равняется примерно 0,6 гаусс, на магнитном экваторе напряженность примерно вдвое меньше.
Магнитные карты. Распределение геомагнитного поля у земной поверхности может быть представлено в виде изомагнитных линий, т.е. линий, вдоль которых значение конкретной компоненты остается постоянным. Карты склонения называются картами изогон (рис. 1). Магнитные карты основаны на многочисленных магнитных съемках, выполняемых на суше, на море и с воздуха. В США магнитные карты готовятся Береговой и геодезической службой и Военно-гидрографическим управлением.
В дополнение к магнитным съемкам высокоточные наблюдения за магнитным полем Земли ведутся во всех частях мира в магнитных обсерваториях. Со спутников осуществляются магнитные съемки на больших высотах, где не существует влияния региональных магнитных аномалий, таких, как намагниченные тела в земной коре, например железные руды.
Магнитные измерения. В магнитных обсерваториях через регулярные интервалы времени определяют абсолютные значения магнитных элементов (а не их вариаций) с возможно большей точностью.
Магнитное склонение D определяется путем измерения азимута (горизонтального направления) стрелочного магнита, свободно подвешенного на некрученой нити таким образом, что магнит располагается горизонтально. Азимут отсчитывается от направления на географический север, который устанавливается с помощью астрономических или геодезических наблюдений. Стандартными приборами магнитное склонение определяется с точностью 0,1'.
Первоначально магнитное наклонение I определялось путем измерения наклона магнитной стрелки, центр которой закреплен на горизонтальной оси; эта ось ориентируется перпендикулярно магнитному меридиану таким образом, что стрелка может поворачиваться в плоскости меридиана. Однако точность этих измерений была невысокой, поэтому стали пользоваться индукционным наклономером, состоящим из круглой многовитковой катушки, которая вращается с большой скоростью вокруг оси, проходящей вдоль диаметра катушки. Ось прикрепляется к рамке таким образом, что ее ориентация может быть измерена. Этот метод основан на возникновении в катушке индуцированного электрического тока при изменении проходящего через нее магнитного потока. Если направление оси катушки не совпадает с направлением магнитного поля, то внутри катушки индуцируется переменный ток. Направление магнитного поля определяется в момент, когда гальванометр не показывает индуцированного тока во вращающейся катушке. С помощью индукционного наклонометра магнитное наклонение может быть установлено с точностью до 0,1'.
Интенсивность горизонтальной составляющей измеряется методом, который разработал Гаусс. Измерения выполняются в два этапа. Вначале измеряется период крутильных колебаний свободно вращающегося в горизонтальной плоскости магнита; этот период зависит от напряженности геомагнитного поля H, а также от магнитного момента M и момента инерции магнита. Затем к магниту прикрепляют немагнитную полоску с известным моментом инерции, после чего эксперимент повторяют. Благодаря добавлению момента инерции период колебаний изменяется, что позволяет вычислить произведение MH. На втором этапе измеряют отклонение магнитной стрелки под влиянием земного магнитного поля и под действием поля магнита, использованного в первом эксперименте, получая отношения M/H. Комбинируя обе величины, MH и M/H, можно установить H.
Сходным образом измеряют вертикальную компоненту Z. Если определено H и Z, магнитное наклонение может быть найдено из соотношения tg I = Z /H.
Протонный магнитометр. Его действие основано на ядерной прецессии (изменении ориентации оси вращения) вокруг направления магнитного поля. Ядра водорода (протоны), находящиеся в воде, под влиянием искусственного магнитного поля, ориентированного примерно под прямым углом к земному магнитному полю, поляризуются. Затем поляризующее магнитное поле внезапно выключается. Протоны начинают свободно прецессировать вокруг направления земного магнитного поля F до тех пор, пока ядерные спины не достигнут нового равновесного состояния. Прецессия протонов индуцирует небольшую электродвижущую силу в катушке. Частота f этого сигнала такая же, как частота прецессии протонов и связана с величиной магнитного поля F соотношением 2?f = ?F, где . - гиромагнитное отношение протона, известное с высокой точностью. Измерение частоты сигнала в катушке позволяет определить общую магнитную интенсивность. Сконструированы также протонные магнитометры для измерения H и Z. При измерении каждого из этих компонентов используется пара колец Гельмгольца (катушки для создания чрезвычайно однородного магнитного поля) с тем, чтобы привести к нулевому значению компонент, который в данный момент не подлежит измерению.
Вековые магнитные вариации. Годовые средние значения магнитных элементов, измеренные в обсерваториях, и результаты магнитных съемок, выполненные с интервалом в несколько лет, показывают, что земное магнитное поле подвергается вековым (медленно меняющимся) вариациям. Эти вариации наносят на карты в виде линий равных значений годовых изменений (карты изовариаций, или изопор) определенных эпох. Изопоры образуют овалы вокруг регионов, где происходят быстрые годовые изменения. В течение одной или двух декад изопоры могут существенно изменяться. Их центры имеют тенденцию к дрейфу в западном направлении.
Наблюдается также медленное вращение направления поля вокруг некоторого фиксированного направления. Например, наблюдения в Лондонской обсерватории показывают, что магнитное поле совершило почти три четверти оборота за последние 400 лет.
Палеомагнетизм. Изучение магнетизма, "сохраненного" в минералах и горных породах, обеспечивает информацию об истории земного магнитного поля в геологическом прошлом. Если горячее вещество охлаждается в магнитном поле от температуры выше точки Кюри (температура, выше которой намагниченное вещество теряет свою намагниченность) до более низких температур, его остаточная намагниченность будет сохранять направление внешнего магнитного поля, существовавшего при охлаждении. Поэтому сформировавшиеся из расплава минералы "запоминают" направление геомагнитного поля. Кроме того, при осадконакоплении намагниченные частицы в водных бассейнах ориентируются под воздействием земного магнитного поля. Эти феномены лежат в основе палеомагнетизма, но их интерпретация исключительно сложна, поскольку магнетизм пород не всегда стабилен.
Палеомагнитные данные легли в основу теории дрейфа материков. В результате исследований разновозрастных горных пород было установлено, что их намагниченность отклоняется от направления современного магнитного поля. Таким образом, создается впечатление, что магнитные полюса в геологическом прошлом перемещались относительно поверхности Земли. Это интерпретируется как свидетельство того, что взаимное расположение материков в разные геологические эпохи менялось.
Природа магнитного поля Земли и его вековых вариаций. Главное дипольное магнитное поле Земли можно было бы объяснить, если бы она была однородно намагничена. Однако намагниченность пород поверхностных слоев противоречит этому. Лабораторные эксперименты показывают, что точка Кюри понижается с увеличением давления. Поскольку давление и температура увеличиваются с глубиной, представляется весьма маловероятным, что ниже определенной глубины ферромагнитные вещества могут сохранять свою намагниченность. Хотя лабораторные эксперименты не полностью моделируют температуру и давление в глубоких слоях Земли, принято считать, что главное магнитное поле Земли не может быть обусловлено постоянной намагниченностью земного вещества.
Сейсмические и другие геофизические данные показывают, что Земля обладает ядром (сходным по плотности с железом или железо-никелевым сплавом), которое находится на глубине ок. 2900 км и обнаруживает некоторые свойства жидкости. У.Эльзассер, Э.Буллард и другие ученые предположили, что в ядре происходят конвективные движения. Перемещение проводящего вещества в магнитном поле индуцирует электродвижущую силу, которая вызывает электрические токи, порождающие дополнительное магнитное поле подобно действию самовозбуждающейся динамо-машины.
Магнитное поле вблизи центров векового хода может быть хорошо представлено изолированными диполями, расположенными вблизи поверхности "жидкого" ядра Земли. Относительно короткое время, за которое происходят вековые вариации, подтверждает, что их причина связана с движениями в ядре. Электрические токи, индуцируемые этими перемещениями вблизи поверхности ядра, вероятно, приводят к возникновению вековых вариаций.
Вариометры. В дополнение к абсолютным измерениям геомагнитного поля магнитные обсерватории ведут непрерывную запись компонентов H, D и Z, поскольку происходят регулярные и нерегулярные вариации магнитного поля. Амплитуда этих вариаций гораздо меньше, чем напряженность постоянного магнитного поля. Приборы для измерения вариаций называются вариометрами. Их действие основано на том, что изменения каждого магнитного элемента вызывают соответствующее отклонение магнитной стрелки, к которой прикрепляется зеркальце, а на него направляется свет от маленькой лампы. Отраженный луч падает на поверхность покрытого фотобумагой цилиндра, который вращается с постоянной скоростью вокруг своей оси. В вариометрах, одновременно измеряющих три компонента поля, фиксируются сразу три кривых на одной магнитограмме (рис. 2). Для регистрации вариаций различной амплитуды и частоты используют разные типы вариометров.
Квантовый магнитометр. Для наблюдений за быстропротекающими вариациями разработан магнитометр на парах рубидия. Этот прибор использует оптическую накачку (см. также ЗЕЕМАНА ЭФФЕКТ). Свет от рубидиевой лампы проходит через камеру, содержащую пары рубидия, и падает на фотоэлемент, регистрирующий интенсивность света. Магнитометр ориентируют так, чтобы луч света располагался почти параллельно магнитному полю. Если приложить переменное магнитное поле, создаваемое катушкой и имеющее частоту, соответствующую одному из зеемановских переходов в атомах рубидия, то увеличится поглощение за счет магнитного резонанса. Частота, соответствующая зеемановскому переходу, представляет собой известную функцию напряженности магнитного поля. Резонансная частота определяется частотой прилагаемого магнитного поля, что позволяет установить интенсивность магнитного поля.
Магнитометр на парах рубидия приемлем для точных измерений быстро меняющихся вариаций магнитного поля, поскольку с его помощью может быть достигнута чувствительность порядка 0,02 гаммы (1 гамма . 10?5 гаусс . 10?9 тесла . 1 нТ). Для измерения абсолютных значений интенсивности используют протонный магнитометр.
Солнечные и лунные магнитные вариации. В соответствии с характером записи вариаций на магнитограмме выделяются "магнито-спокойные" и "магнито-возмущенные" дни. Эти магнитные возмущения гораздо более часты и интенсивны в полярных широтах.
Даже в идеально спокойных условиях записи на одной станции магнитные элементы H, D и Z систематически изменяются в зависимости от времени. Эти вариации носят название солнечно-суточной спокойной магнитной вариации и обозначаются Sq; здесь S показывает, что вариация зависит от местного времени обсерватории (т.е. от ее долготы относительно Солнца), а индекс q означает "спокойный".
К северу и югу от экватора вплоть до 30. вариация Sq горизонтальной составляющей H соответственно увеличивается (в северном направлении) в течение дневного времени с максимумом вблизи полудня и уменьшается (в южном направлении) в ночное время; фаза вариации меняется на обратную к северу или югу от экваториального пояса. В северном полушарии Sq склонения D имеет направление на восток в утренние часы и на запад - в послеполуденное время; то же самое относится к вертикальной составляющей Z, которая уменьшается к ночи. Эти изменения D и Z меняют свой знак на обратный к югу от экватора.
Если рассматривать все три элемента совместно, Sq имеет амплитуду, гораздо бльшую днем, чем ночью, что указывает на то, что Sq возникает в результате электрических токов, текущих в ионосфере. Электрические токи, ответственные за возникновение Sq, измеряются с помощью геофизических ракет, запускаемых вблизи экватора.
Осредненные за месяц или год величины амплитуд Sq меняются в соответствии с изменением солнечной активности; они наибольшие, когда на Солнце наблюдается максимум пятен. Амплитуда Sq и, до некоторой степени, ее глобальное распределение ежедневно меняются; тем не менее в этих изменениях не наблюдается простого следования за солнечной активностью.
Имеются и другие регулярные вариации, наложенные на Sq и меняющиеся в зависимости от лунного времени. Эти вариации, названные "лунно-суточными вариациями" (L), представлены главным образом регулярными полусуточными изменениями магнитного поля. Их амплитуда гораздо меньше, чем амплитуда Sq, например, вариация Sq горизонтальной составляющей H колеблется в пределах 30 гамм в низких широтах; колебания L - лишь ок. 3 гамм. Вариация L, в отличие от Sq, почти не выражена на магнитограммах (за исключением геомагнитного экватора, где ее величина необычно велика). Ее можно выделить лишь на основе тонкого математического анализа, в котором Sq и другие вариации подвергаются осреднению. Хотя L варьирует в зависимости от лунного времени, в основном она изменяется в дневные часы, когда электропроводность ионосферы максимальна. Следовательно, вариация L обязана электрическим токам, индуцируемым приливными движениями в нижних слоях ионосферы.
В пределах узкого пояса над магнитным экватором Sq значительно возрастает в полуденные часы. Этот эффект обусловлен существованием "электроджета" - концентрированного электрического тока, текущего в пределах узкого пояса в ионосфере. Лунно-суточная вариация L возрастает с большей скоростью, чем Sq. Полагают, что экваториальный электроджет, текущий с запада на восток, возникает вследствие повышения электропроводности в направлении поперек магнитного поля (которое в этой области направлено горизонтально).
Магнитные бухты. Часто наблюдаются магнитные вариации, при которых линия записи H на магнитограмме своим очертанием напоминает бухту, образованную береговой линией. "Магнитные бухты" имеют максимальную амплитуду и наиболее часто наблюдаются в авроральных зонах (зонах полярных сияний) с ночной стороны Земли, по одной в каждом полушарии; их центры отстоят от геомагнитных полюсов на 23?. Типичная магнитная бухта указывает на интенсивный электроджет в ионосфере в западном направлении, протекающий через авроральную зону в ранние утренние часы (по местному времени), и более слабый электроджет, текущий в восточном направлении в поздние вечерние часы. Рассеянные токи от этих авроральных электроджетов распространяются над всей Землей и возбуждают магнитные бухты гораздо меньшей интенсивности в низких широтах.
Мощные магнитные возмущения в авроральных зонах, называемые полярными штормами, тесно связаны с областью распространения полярных сияний и других полярных возмущений.
Влияние солнечных вспышек. В результате наблюдений за Солнцем были обнаружены неожиданные вспышки вблизи солнечных пятен. Одновременно с ними регистрируются возмущения на магнитограммах станций, расположенных на дневной стороне Земли. В земном магнитном поле солнечная вспышка вызывает неожиданное увеличение Sq длительностью 20-30 мин, поэтому эффект солнечной вспышки обозначают Sqa, где значок a указывает на увеличение интенсивности.
В момент вспышки возрастает поток жесткого излучения от Солнца; это приводит к увеличению ионизации, росту электропроводности ионосферы и усилению электрического тока, вызывающего Sq. Резкое увеличение ионизации в более низких областях ионосферы вызывает заметное поглощение радиоволн и перерывы радиосвязи на большие расстояния.
Магнитная буря. Особенно интенсивные магнитные возмущения, распространяющиеся на весь земной шар, называют магнитными бурями. Некоторые магнитные бури начинаются неожиданно и почти одновременно по всей Земле, а другие развиваются постепенно. Признаком внезапно начинающейся магнитной бури служит резкое изменение всех трех магнитных элементов на магнитограмме. Горизонтальный компонент H внезапно увеличивает интенсивность, чему иногда предшествует небольшой отрицательный импульс. При внезапном начале бури амплитуда вариации максимальна в авроральных зонах и уменьшается по направлению к экватору; увеличение Sq и L наблюдается в пределах узкого пояса на магнитном экваторе в дневные часы.
После внезапного начала бури линия записи горизонтального компонента H в течение нескольких часов обычно располагается выше уровня, предшествовавшего буре; этот этап (положительных значений) рассматривается как первая или начальная фаза. Значения H составляют от 10 до 20 гамм в средних широтах. За этой фазой следует существенное уменьшение до значений значительно ниже нормальных. Падение амплитуды на несколько десятков гамм во время бури средней интенсивности отвечает ее главной фазе. Максимальное отклонение достигается через 12 ч. Вслед за этим значительным уменьшением происходит медленное возвращение к нормальному уровню, которое обычно длится несколько дней. Эти особенности представляют собой осредненные характеристики магнитных бурь в средних и низких широтах; характеристики отдельных бурь могут существенно отличаться от средних. Крупные магнитные бури проходят эти фазы быстрее, чем слабые.
По мере приближения к авроральной зоне на изменения магнитного поля, связанные с магнитной бурей, накладываются магнитные бухты. Изменения поля здесь гораздо более нерегулярные и интенсивные, чем в низких широтах; вариации во время бурь могут достигать нескольких тысяч гамм. В пределах полярных шапок (околополярные области внутри авроральной зоны) степень возмущения несколько меньше, чем в авроральной зоне, но гораздо более сильная, чем на низких широтах.
Вариации в высоких широтах свидетельствуют о существовании интенсивных и концентрированных авроральных электроджетов, которые обычно направлены на восток перед "магнитной полночью" и на запад - после нее. Магнитная полночь определяется как время, когда Солнце располагается над магнитным меридианом, противоположным тому, на котором располагается станция; различие между локальной полночью и магнитной полночью зависит от положения станции (и в некоторой степени от времени года), это различие весьма незначительно в низких широтах, но в высоких широтах может достигать более одного часа. Электроджет, направленный к западу, гораздо сильнее ориентированного на восток; общая сила тока для бури средней интенсивности составляет 300 000 ампер и даже более во время максимума после магнитной полночи.
Часто магнитные бури происходят через 1-2 дня после солнечной вспышки из-за прохождения Земли через поток частиц, выброшенных Солнцем. Исходя из времени запаздывания, скорость такого корпускулярного потока оценивают в несколько миллионов км/ч.
Теория магнитных бурь была развита С.Чапменом, В.Ферраро, Х.Альфвеном, С.Зингером, А.Десслером, Е.Паркером и другими. Когда на некотором расстоянии от Земли поток солнечных частиц - протонов и электронов - сталкивается с земным магнитным полем, это вызывает "магнитный удар", который в виде сильной гидромагнитной ударной волны проходит через окружающий Землю электропроводящий газ. Внезапное начало магнитной бури означает приход гидромагнитной ударной волны.
Солнечный газ, обволакивая Землю, сжимает ее магнитное поле и, следовательно, увеличивает его интенсивность. Рост магнитного поля в начальной фазе магнитной бури происходит как следствие этого эффекта. Некоторые из солнечных частиц захватываются земным магнитным полем на расстоянии более 40 000 км от Земли. Когда движение заряженной частицы в магнитном поле ориентировано косо по отношению к магнитной силовой линии, она перемещается по спирали вокруг этой линии. По мере того, как она вторгается в область с интенсивным магнитным полем, составляющая ее скорости, параллельная вектору напряженности поля, постепенно уменьшается, а скорость вращения возрастает, при этом общая скорость остается постоянной. Когда параллельная полю составляющая скорости становится нулевой, частица как бы отражается и начинает двигаться назад вдоль силовой линии, продолжая спиралевидное вращение вокруг нее (точка, где происходит отражение, называется "точкой магнитного зеркала", по аналогии с обычным оптическим зеркалом, отражающим свет). Таким образом, захваченные магнитным полем заряженные частицы, вращаясь по спирали вокруг силовых линий, колеблются между двумя зеркальными точками, одна из которых расположена в северном, а другая - в южном полушарии.
Магнитное поле ослабевает с увеличением расстояния от Земли, из-за чего увеличивается радиус кривизны спирального движения частиц вокруг силовых линий на внешней части траектории. К тому же магнитные силовые линии выгнуты наружу, поэтому колеблющиеся вдоль них частицы испытывают центробежное ускорение, направленное от Земли, что способствует увеличению радиуса кривизны траектории частицы в ее части, более удаленной от Земли по сравнению с более близкой к Земле. А поскольку протоны и электроны вращаются вокруг магнитных силовых линий в противоположных направлениях, эти эффекты вызывают дрейф протонов в западном направлении, а электронов - в восточном.
Суммарная скорость дрейфа зависит от энергии частицы и угла, образованного вектором ее скорости с силовой линией, когда частица пересекает экватор. Эти два фактора лежат в некотором диапазоне, поэтому частицы имеют различные скорости дрейфа и, захваченные земным магнитным полем, быстро распределяются, формируя оболочку вокруг Земли. Западный дрейф протонов и восточный дрейф электронов есть не что иное, как электрический ток, "размазанный" по оболочке. Этот ток, имеющий повсюду западное направление, генерирует магнитное поле, направленное так, что оно ослабляет магнитное поле Земли. Этим можно объяснить особенности главной фазы магнитной бури.
Микропульсации. Они представляют собой быстрые колебания небольшой амплитуды, которые наблюдаются как в спокойные, так и в возмущенные периоды. В средних и низких широтах часто наблюдаются два условных класса микропульсаций: Pc и Pt. Микропульсации Pc продолжаются более или менее непрерывно в течение многих часов с периодом от 10 до 60 сек; их амплитуда составляет порядка 0,1 гамма. Pt состоят из рядов пульсаций с небольшой амплитудой, каждый ряд продолжается от 10 до 20 мин, индивидуальные пульсации имеют период от 40 с до нескольких минут и амплитуду ок. 0,5 гаммы. Пульсация Pc происходит наиболее часто в утренние часы. Pt часто ассоциируется с магнитными бухтами и наблюдается чаще всего ночью.
При использовании более чувствительных приборов, чем обычные вариометры, выявляются пульсации с более короткими периодами. С достаточной надежностью наблюдались колебания с частотой 2 Гц, но, возможно, существуют пульсации и с большей частотой. Амплитуда быстрых пульсаций очень мала - порядка 0,1 гаммы или меньше. Для их измерения используется катушка с большим числом витков проволоки (до 20 000) или огромная проволочная петля, охватывающая площадь 50-75 км2, а также квантовые магнитометры.
В авроральных зонах и вблизи них выявлены гигантские микропульсации с амплитудой, значительно большей, чем у Pc, достигающей нескольких десятков гамм. Огибающая гигантской микропульсации постепенно возрастает и уменьшается с периодом от одной до нескольких минут. В авроральной зоне также выявлены пульсации с периодами в несколько минут, некоторые из них состоят из нескольких почти синусоидальных колебаний, продолжающихся в течение нескольких часов. Наиболее часто они возникают в годы высокой солнечной активности. В авроральной зоне наблюдаются и более быстрые микропульсации с периодом от нескольких секунд до 30 с, связанные, по-видимому, с авроральной активностью. Феномен гигантских микропульсаций не вполне исследован. Высказывается предположение, что некоторые их типы обусловлены колебаниями магнитных силовых линий во внешней области атмосферы Земли.
Геомагнитное поле в высоких слоях атмосферы. С началом запуска ракет и спутников в высокие слои атмосферы геомагнитное поле стало предметом пристального интереса. Раньше полагали, что земное магнитное поле простирается на большие расстояния. Л.Бирман предположил, что хвосты комет, состоящие из ионов, вытягиваются в сторону от Солнца под напором непрерывно испускаемого им потока заряженных частиц. По его расчетам, плотность ион-электронных пар вблизи Земли составляет ок. 100/см3. Идея была поддержана Е.Паркером, который назвал этот непрерывный корпускулярный поток "солнечным ветром". По его расчетам, если солнечный ветер действительно существует, земное магнитное поле должно быть сосредоточено в ограниченной области вокруг Земли, размер и форма которой зависят от силы солнечного ветра. Согласно данным магнитометра, установленного на космическом аппарате "Пионер-1" (1958), граница земного магнитного поля в направлении Солнца находится на расстоянии ок. 80 000 км от Земли (магнитосфера Земли). За пределами этой зоны зарегистрировано магнитное поле интенсивностью порядка 10 нТ. В межзвездном пространстве существует магнитное поле порядка 0,1 нТ.
Важное открытие было сделано группой ученых под рук. Дж.Ван Аллена в 1958. С помощью приборов, установленных на первом в США спутнике "Эксплорер-1", они обнаружили, что во внешней атмосфере Земли существует радиация высокой интенсивности. Измерения, проделанные с советских спутников под руководством С.Н.Вернова и А.Е.Чудакова (1958), выявили вторую зону радиации. Эти зоны получили название радиационных поясов, или поясов Ван Аллена. Первый пояс простирается от 960 до 8000 км над земной поверхностью; второй - от 16 000 до 64 000 км. В пределах внутреннего пояса имеются протоны с высокой энергией. Протоны малой энергии и электроны заполняют более обширную область. Захват заряженных частиц земным магнитным полем впоследствии был проверен в экспериментах "Аргус" (1958), когда с помощью ядерного взрыва на больших высотах во внешние слои атмосферы были искусственно введены электроны. Оказалось, что захваченные электроны остаются в тонкой оболочке магнитосферы в течение нескольких дней.
Земные токи. Земные, или теллурические, токи текут в приповерхностном слое земной коры. Косвенно об их существовании можно заключить на основе измерений потенциометром разности потенциалов между двумя электродами, помещенными в грунт. Измеренная разность потенциалов представляет собой электродвижущую силу, возникающую в результате электрических токов, величина которых зависит от сопротивления коры. Величина сопротивления (от 100 до нескольких миллионов и более Ом?см) зависит от геологической структуры и заметно меняется с глубиной. Поскольку верхний слой коры земной обладает электропроводностью, меняющееся магнитное поле индуцирует в нем электрические токи. Например, магнитная вариация Sq индуцирует глобальные земные токи. Поскольку сопротивление Земли не изотропно, земные токи обладают преимущественным направлением.
Исследование земных токов в авроральных зонах служит хорошим индикатором полярных возмущений, а также полезны для изучения микропульсаций.

Wikipédia

Геомагнетизм

Геомагнети́зм (земной магнетизм) — раздел геофизики, изучающий происхождение и природу магнитного поля Земли и околоземного космического пространства; изучающий распределение в пространстве и изменения во времени геомагнитного поля и связанные с ним геофизические процессы.

Геомагнетизм рассматривает вопросы:

  • возникновение и эволюция основной, постоянной составляющей геомагнитного поля;
  • природа переменной составляющей (примерно 1 % от основного поля);
  • структура магнитосферы;
  • изучение закономерностей вариаций геомагнитного поля.
O que é ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: ЭЛЕКТРОСТАТИКА - definição, significado, conceito